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Laureen Lam, CS 224N, Final Project 
 
 
Introduction 
 
The goal of this project is semantic analysis of movie reviews to help predict movie 
ratings.  Although the data set used for this project is labeled with a specific rating, there 
are texts, such as blogs, on the Internet that have no explicit rating label, but that could 
potentially help in determining the quality of something of interest, whether it be a 
movie, a restaurant, or an everyday consumer product.  Additionally, some texts might 
have the wrong rating labels (i.e. be mis-labelled) given the preferences of a particular 
user; for instance, someone who dislikes vegetarian restaurants might give one a 0-star 
rating, and that would make any non-0 ratings be mislabelled ratings for that restaurant, 
given the preferences of that particular user.  Accurately predicting star ratings could help 
determine the correct labels for items given a particular user.  In this project, I investigate 
using a Maximum Entropy classifier with several different features to help predict movie 
ratings based on movie review text. 
 
 
Linguistic Assumptions 
 
The linguistic assumptions I made were that movie reviews consisted of words separated 
with spaces, and that word N-grams are an important part of what constitutes the 
semantic meaning of a piece of text.  So, for instance, the bigram “I liked” might have a 
positive connotation, and the bigram “didn’t like” might indicate a negative one.  Taking 
N-grams of higher order N’s might help differentiate between phrases such as “I didn’t 
like” versus “they didn’t like”, and improve the accuracy of the classifier, since the 
former would likely affect the final rating that the author assigns while the latter may not. 
 
Additionally, I assume that the constituents of a word might have significance in the 
semantic meaning of the text.  For example, the first 3 letters of the words “dislike” and 
the first 2 letters of the words “uninspired” and “unmotivating” indicate a negation of 
some sort.  The more often people use words with negation-associated letter N-grams like 
these, the more they tend to dislike the object are speaking about; in the case of movie 
reviews, I assume that this would consequently cause them to give the movie a low or 
negative rating. 
 
 
Data 
 
For this project, I used the movie review data sets provided by Bo Pang and Lilian Lee on 
their website at http://www.cs.cornell.edu/people/pabo/movie-review-data/.  I used two 
data sets: the Polarity Dataset v2.0 and the Scaled Dataset v1.0.  The Polarity Dataset has 
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movie reviews classified using 2 labels: either positive sentiment or negative sentiment.  
The Scaled Dataset includes movie reviews that are labeled based on the rating that the 
author gave to the movie, using a 3-class scale of 0, 1, or 2 stars.  The Polarity Dataset 
contains 1000 positive reviews and 1000 negative reviews, and the Scaled Dataset 
contains 27,886 labeled movie reviews.  I downloaded both data sets; they can be found 
in the /data subdirectory under /polarity and /scaled in the submitted final project files. 
 
 
Maximum Entropy Classifier 
 
For this project, I used the Maximum Entropy Classifier that I implemented in PA3, and 
modified it to read in data from the two different movie review data sets.  I then 
investigated improving the accuracy of the classifier using several different features, 
detailed below. 
 
 
Performance on the Polarity Dataset 
 
I divided the Polarity Data Set into a training set and test set using a standard 80/20 split, 
applied to both the 1000 positive and 1000 negative reviews.  This means that the training 
data contained the same number of positive reviews as negative reviews, and likewise for 
the test data. 
 
 
Baseline Performance 
 
Without any features, the MaxEnt classifier achieved a 50% accuracy, as expected, which 
is equivalent to randomly guessing the label of each review in the 50% positive / 50% 
negative test set. 
 
I use this as the baseline performance.  All the features presented below are investigated 
by themselves, in isolation from other features, unless otherwise stated. 
 
 
Numbers as Features 
 
The first feature I tried was whether a review contained any numbers in it.  This feature 
was not very useful for biomedical data, and so it is not surprising that it did not help for 
movie review data either.  The accuracy using this feature was 50%, which is no better 
than guessing. 
 
 
Prefixes as Features 
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The next feature I tried was using the 3-letter prefixes of words in the reviews (i.e. word 
truncation to the first 3 letters of words).  I had found in PA3 that using word prefixes as 
features improved performance of the MaxEnt classifier for biomedical terms, so it is not 
unreasonable to expect that using word prefixes as features might also help in classifying 
movie reviews. 
 

Accuracy 
Disallowing Repeated Features:    79.00% 
Allowing Repeated Features:     81.75% 
Allowing Repeated Features with Counts Appended: 74.00% 

 
Using prefixes, and allowing repetitions of non-unique prefixes to be added as features of 
reviews, the MaxEnt classifier achieved an accuracy of 81.75%, an improvement of 
roughly 30% from not having any features at all. 
 
I was curious to see what would happen if I captured the number of repetitions for a non-
unique prefix and stored it as a number appended to the prefix itself as a feature.  In this 
case, the accuracy dropped to 74%.  One reason for this drop is that capturing the exact 
number of repetitions is not as useful for the MaxEnt classifier because it distinguishes 
between the exact number of repetitions even when the numbers are very close (e.g. 1000 
versus 1001). 
 
I then tried disallowing repetitions of non-unique prefixes completely.  Essentially, the 
classifier is collapsing all the non-unique prefixes into a single one, regardless of the 
exact number of repetition.  For the reason above, this performed better than capturing 
the number of repetitions as part of the feature, achieving an accuracy of 79%.  
 
 
Suffixes as Features 
 
I also tried suffixes, since this feature worked slightly better than prefixes in the 
biomedical corpora.  However, for movie reviews, the converse proved to be true: 
suffixes used as features resulted in an accuracy of only 78.75%, compared to 81.75% 
using prefixes. 
 
Counting all repetitions of suffixes and using just those suffixes appended with their 
counts as features, the accuracy dropped to 67.5%.  This drop in accuracy is worse than 
with prefixes. 
  
Disallowing repetitions of non-unique suffixes completely resulted in an accuracy of 
73%.  This is similar to the behavior that the accuracies followed for the prefixes feature. 
 

Accuracies 
Disallowing Repeated Features:    73.00% 
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Allowing Repeated Features:     78.75% 
Allowing Repeated Features with Counts Appended: 67.50% 

 
In examining the Polarity data set, there are many words that end in the same 3 letters, 
most notably “-ing”, that are equally prevalent in both positive and negative reviews.  
Since the last few letters of most English verbs really just indicate a grammatical role of 
the word being used by the author, and is not generally related to whether the review was 
positive or negative, this feature did not perform as well as prefixes, which tries to 
capture the actual meaning of an English word through a crude form of stemming. 
 
Additionally, in both the training and test movie review data, negative reviews tended to 
have more of the prefix “-un” in them (e.g. “uninspired”, “untalented”, “uncomfortably”), 
which the prefix feature was able to capture somewhat, but which was completely missed 
by the suffix feature. 
 
On the other hand, in the biomedical corpus from PA3, words tended to end in special 
suffixes such as “-ide” and “-osis” that were a signal as to what particular tag the word 
was more likely to have. 
 
 
Letter N-grams as Features 
 
Next, I investigated using letter N-grams as features.  For each word, I pre-pended a caret 
(^) and appended a dollar sign ($) to capture information about the beginnings and 
endings of words. 
 
I had initially excluded all words that were not long enough to yield an N-gram for the 
chosen N, but later decided to include them for comparison.  Using letter N-grams and 
allowing shorter words to be used as features actually caused the accuracies to go up 
slightly, but the difference is so small that it could easily be attributed to noise in the test 
data. 
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Figure 1. Accuracy of the MaxEnt Classifier using letter N-grams. 
 
The graph shows that the MaxEnt classifier was able to classify more accurately as the 
value for N increased from 1 to 5.  After N=5, the accuracy starts to level off, and begins 
to drop for features that are appended with their feature count.  At this point, there are so 
many N-grams that each one has a more probable chance of having a different count than 
what appears in the test data, resulting in the inability of the MaxEnt classifier to 
effectively use that information for classification. 
 
 

N 

Disallowing 
Repeated 
Features 

Disallowing 
Repeated 

Features, and 
including shorter 

words 

Repeated 
Features 
Allowed 

with Counts  
Appended 

Allowing 
Repeated 
Features 

Allowing 
Repeated 

Features, and 
including 

shorter 
words 

1 56.50% 56.50% 50.25% 50.00% 50.00% 
2 69.25% 69.25% 66.50% 70.75% 70.75% 
3 82.25% 82.75% 80.75% 80.00% 81.25% 
4 83.50% 84.25% 81.00% 85.25% 84.25% 
5 86.75% 87.00% 84.00% 86.25% 86.25% 
6 84.75% 87.00% 85.00% 85.25% 86.00% 
7 86.00% 86.50% 82.75% 84.50% 86.50% 

 
Figure 2. Accuracies achieved by the MaxEnt classifier on Polarity Dataset using letter N-grams. The 
highest accuracy in each column is bolded. 
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In PA3, I had found that using letter N-grams worked better than just prefixes or suffixes, 
since the N-grams capture both as well as additional information related to each word.  
The results show that using letter 3-grams as features caused the classifier to perform 
better than using suffixes but slightly worse than just using prefixes, for the movie review 
data, achieving an accuracy of 80%.  Including words shorter than the N chosen, the 
accuracy rose slightly to 81.25% for N = 3. 
 
To summarize: Allowing repetition of letter N-grams as features, the best accuracy 
achieved was 86.25% using letter 5-grams.  Disallowing repetitions, the accuracy rose to 
86.75%.  And, lastly, disallowing repetitions but allowing words shorter than N=5 to be 
used as features, the accuracy rose slightly to 87% for 5-grams.  In examining the movie 
review data, I found that some reviews, such as the one for The 13th Warrior in 
cv814_20316.txt (label = negative), contain a large number of words that are less than 5 
letters long (“not”, “to”, “but”, “it”, etc.), while other reviews do not.  The classifier is 
likely picking up on the differences between these types of movie reviews, and especially 
on negative words like “not”, and using them to better classify the reviews, when words 
less than N long are allowed to be used as features. 
 
 
Word N-grams as Features 
 
After letter N-grams, I thought a reasonable next step would be to try using word N-
grams as features.  As in PA1, I created a START token <S> and a STOP token </S> that 
I pre-pended and appended to each sentence, respectively, so that I could capture 
information about the beginnings and endings of sentences.  (For trigrams, I pre-pended 
two START tokens.) 
 

 



 7 

Figure 3. Performance of MaxEnt classifier on Polarity Dataset using word N-grams as features. 
 
I tried unigrams, bigrams, trigrams, and combinations of those three as features.  Of the 
N-grams used alone, unigrams performed the best, followed by bigrams, and finally 
trigrams.  Combining unigrams with bigrams resulted in a slight improvement over just 
using unigrams.  Further combining unigrams and bigrams with trigrams resulted in the 
best accuracy of 89.5%.  This accuracy is slightly better than the best accuracy of 87% 
achieved using letter N-grams.  One reason might be that word N-grams convey more 
information about the meanings of sentences than letter N-grams. 
 
 
Final Feature Set 
 
My attempt to find a good final features set was not as clear-cut as I had expected.  When 
combining prefixes with the letter N-gram, word unigram, and word trigram features, the 
classifier achieved worse results than just using the letter N-gram feature alone.  
Allowing repeated prefixes, but disallowing repeated letter 5-grams, and also allowing 
words less than N=5 in length to be used as features, the accuracy was only 85.75%, as 
opposed to 87% using just letter 5-grams (disallowing repeats and allowing shorter 
words). 
 
I thought that this might be due to the prefixes causing the classifier to overfit to the 
training data, since it was giving extra emphasis to letter 3-grams at the beginnings of 
words, which were already part of letter 5-grams, so I disallowed repeated prefixes, while 
keeping all other parameters for the letter 5-grams and word N-grams the same.  This 
helped, and the accuracy went up to 87%, which is the same as the accuracy using letter 
5-grams. 
 
Next, I decided to exclude prefixes altogether.  This reduced the number of features 
trained on by approximately 380,000 (about a 7% reduction).  Again, using letter 5-
grams, word unigrams, word trigrams, and prefixes, this made the accuracy 88%.  This is 
about the same as word unigrams and word trigrams used together, which had achieved 
an accuracy of 88.25%.  
 
The best feature set was created using word unigrams, word bigrams, and word trigrams 
together, which achieved an 89.5% accuracy.  This totaled 2.8 million features from 
approximately 1.2 million words in the training set. 
 
 
Performance on the Scaled Dataset 
 
I made the necessary modifications to the MaxEnt classifier to use the Scaled Dataset: the 
exact format for this dataset is two separate files, one containing the labels and the other 
containing the text of the corresponding movie review on the corresponding line number. 
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Since the reviews are ordered based on their label in the data set, I split the reviews into a 
training set and test set (again, using an 80/20 split) by placing labeled reviews into 1 of 
10 buckets, calculated by taking the modulus10 of the line number of the review.  I 
combined the reviews in the first 8 buckets to create a training set, and combined those in 
the last 2 to create the test set.  This was to ensure that the accuracies calculated for each 
feature remained the same through different runs.  An alternative approach was to 
randomly select the bucket for each review, but this had the disadvantage in that the 
accuracies calculated varied between different runs even if the features remained the 
same.  Because I wanted accuracies that were consistent across runs, I chose the 
modulus10 approach. 
 
 
Features for the Scaled Dataset 
 
I examine the same features for the Scaled Dataset as for the Polarity Dataset.  The 
baseline accuracy with no features was 37.80% for the dataset with 3 classes.  The 
dataset did not have an even split of movie reviews in each class, and so this accuracy is 
slightly higher than what would be expected for a dataset that did have an even split. 
 
 
Numbers as Features (Scaled Dataset) 
 
Using the presence of numbers in the movie review text as a feature did not help the 
accuracy, as expected from its performance in both the Polarity Dataset and in PA3.  The 
accuracy remained at 37.80% using this feature, which is the same as using no features at 
all.  This suggests that the movie ratings assigned by movie reviewers had nothing to do 
with their tendency, or lack thereof, of putting numbers in their reviews. 
 
 
Prefixes & Suffixes as Features (Scaled Dataset) 
 
Using prefixes as features, but disallowing repeated prefixes, the accuracy was 59.5%, 
roughly a 20% improvement in accuracy over the baseline.  Allowing repeated prefixes 
caused the accuracy to drop slightly to 58.4%.  Finally, counting the number of 
repetitions of prefixes and using just those prefixes appended with their counts as 
features, the accuracy was 57.6%. 
 
Using non-unique suffixes, the accuracy was 55.5%, about 4% worse than non-unique 
prefixes.  Allowing non-unique suffixes to be used as features, the accuracy also dropped, 
to 53.8%.  Counting the number of repetitions of suffixes and using just those suffixes 
appended with their counts as features, the accuracy dropped further still to 52.4%. 
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We see that using prefixes as features caused the classifier to perform better than using 
suffixes, which is the same behavior we saw for the Polarity Dataset, but different from 
the behavior for the Genia corpus (which contained mostly biomedical terms). 
 
 
Letter N-grams as Features (Scaled Dataset) 
 
The results obtained are as follows: 
 

 
 
Figure 4.  MaxEnt classifier accuracy on Scaled Dataset using letter N-grams as features. 
 
 

N 

Disallowing 
Repeated 
Features 

Disallowing 
Repeated Features, 

and including 
shorter words 

Allowing 
Repeated 
Features 

Allowing 
Repeated 

Features, and 
including 

shorter words 
1 42.00% 42.00% 37.80% 37.80% 
2 52.90% 52.90% 51.40% 51.40% 
3 65.30% 65.30% 57.00% 57.00% 
4 65.20% 68.10% 62.00% 61.20% 
5 68.30% 68.10% 65.80% 63.70% 
6 69.50% 69.90% 67.40% 64.20% 
7 66.80% 69.50% 65.40% 62.00% 

 
Figure 5.  Performance of MaxEnt classifier on Scaled Dataset using letter N-grams as features. The best 
accuracy in each column is bolded. 
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The best accuracy of 69.90% was achieved with N = 6.  This is only one off from the 
best N for the Polarity Dataset, which was 5.  In both data sets, N = 1 achieved the worst 
accuracy, and the accuracy got better rapidly as N increased to 3.  For both the Polarity 
and Scaled datasets, the improvements quickly leveled off after N = 3.  This suggests that 
the bulk of the meanings of words are encoded in the first 3-4 letters. 
 
Disallowing repeated features, and including shorter words, caused the accuracy to go up, 
which is similar to the behavior in the Polarity Dataset for the reasons stated. 
 
 
Word N-grams as Features (Scaled Dataset) 
 
START and STOP tokens were pre-pended and appended, respectively, to each sentence 
in a review before the word N-grams were taken.  The accuracies for using word N-grams 
as features are summarized below. 
 

 
Figure 6.  Performance of MaxEnt classifier on Scaled Dataset using word N-grams as features. 
 
For both the Polarity and Scaled data sets, using word unigrams, as opposed to bigrams 
or trigrams alone, achieved the highest accuracy when repeated features were disallowed. 
 
Rather than appending the counts of N-grams to their respective features like I did for the 
Polarity Dataset (which had resulted in poor accuracies), I decided to try enumerating the 
features instead.  So, for example, a unigram “foo” might appear 3 times, and would be 
captured using the feature set “foo1”, “foo2”, and “foo3”.  The idea is that, even if the 
unigram does not appear the exact same number of times in a review in the test set as in a 
review from the training set, the classifier will still be able to use some features to help it 
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determine the correct label for the review.  So, for instance, if “foo” appears 100 times in 
most of the training reviews from one class, and 101 times in a test review, the classifier 
would still be able to use “foo1” through “foo100” as features in the test data that have a 
corresponding feature in the data on which it has trained.  Using this method, the 
classifier was consistently able to get better results than by allowing repeated features 
without enumeration. 
 
Overall, using unigrams with trigrams resulted in the highest accuracy: 72.7%.  In the 
Polarity Data set, the highest accuracy resulted from using unigrams, bigrams, and 
trigrams combined.  However, the difference in accuracy between using unigrams and 
trigrams, versus using the combined set of all three N-grams, is less than 1% in the 
Scaled Dataset. 
 
 
Final Feature Set (Scaled Dataset) 
 
I tried various combinations of the features mentioned above, but, similar to the Polarity 
Dataset, the best feature set consisted of only word N-grams.  In this case, using just 
unigrams and trigrams resulted in the best accuracy of 72.7%. 
 
I was curious as to what types of errors the classifier was making in the Scaled dataset.  
Of the 240 reviews with 0 stars, 93 of them were mislabeled; of those 93, it turns out that 
only 14 of the reviews that were mislabeled had a rating that was more than 1 star away 
from the correct rating.  Similarly, of the 306 reviews with 2 stars, 72 of them were 
mislabeled, but only 12 (4%) of those mislabeled reviews had a rating that was more than 
1 star away from the correct rating.  The majority (91.3%) of the reviews in the test set 
were either classified correctly or close to the correct rating, where close is defined as 
being at most 1 star off from the true rating. 
 
 
Comparison with Related Work 
 
Pang and Lee did similar work in their paper, Thumbs up? Sentiment classification using 
machine learning techniques, where they used various classifiers (MaxEnt, SVM, and 
Naïve Bayes) to determine the correct polarity ratings for movie reviews.  They achieved 
a best MaxEnt classifier accuracy of 80.8% using word unigrams combined with word 
bigrams, and doing 3-fold cross-validation, on a Polarity Dataset of 700 positive and 700 
negative movie, available on their website under the name Polarity Dataset v1.0. 
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Figure 7.  Accuracies achieved by Pang & Lee on the Polarity v1.0 dataset in their paper, Thumbs up? 
Sentiment classification using machine learning techniques, using 3-fold cross-validation.  The classifiers 
used are a Naïve Bayes classifier (NB), a Maximum Entropy classifier (ME), and a Support Vector 
Machine (SVM).  As a note, Pang and Lee did not use START and STOP tokens in their word unigrams 
and bigrams features. 
 
For comparison, I ran my MaxEnt classifier on the same data set, with 3-fold cross-
validation, using my own features.  I achieved an accuracy of 82.3% using word 
unigrams combined with word bigrams, with START and STOP tokens pre-pended and 
appended to each sentence: 
 

N Accuracy 
1 82.50% 
2 78.57% 
3 75.71% 

1,2 82.29% 
2,3 78.57% 
1,3 82.79% 

1,2,3 83.21% 
 
Figure 8.  MaxEnt classifier accuracy on Polarity Dataset v1.0 using Word N-grams as features with 
START & STOP tokens pre-pended and appended to each sentence, and 3-fold cross-validation. 
 
Additionally, Pang and Lee achieved a best accuracy of 82.9% using an SVM classifier 
with word unigrams as features.  The best accuracy I achieved with my MaxEnt classifier 
on the dataset was 83.2% using word unigrams combined with word bigrams and word 
trigrams. 
 
 
Conclusion and Future Work 
  
Trying to predict the sentiments for the 2-class, polarity movie review data set was much 
easier than predicting the ratings for the 3-class, scaled movie review data.  The best 
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accuracy achieved by the MaxEnt classifier for the 3-class data set was 72.7%, and the 
best accuracy for the polarity data set was 89.5%. 
 
Although using the MaxEnt classifier for the 3-class data set did not perform as well as 
for the 2-class data set when classifying the exact label of a movie review correctly, it 
was still able to label 92.3% of the reviews correctly or close to the correct movie rating, 
where close is defined as being at most 1 star off from the true rating. 
 
Future work could be to use a SVM classifier with different kernels to try to achieve a 
higher accuracy.  There are also many other classifiers to experiment with, including 
Naïve Bayes, k-NN clustering, and decision trees, that could provide an even better 
accuracy when coupled with the Maximum Entropy classifier. 
 
Additionally, in trying to use word unigrams, bigrams, and trigrams all as features at the 
same time, I found that my machine quickly ran out of memory and I consequently had to 
move my testing to the corn machines, which have much more memory.  One thing to try 
in the future would be to build several MaxEnt classifiers, each running with just one 
feature set, instead of having just one classifier running with all the features, then 
combining their label probabilities for test set reviews via a top-level classifier (not 
necessarily a MaxEnt classifier itself).  Such a scheme would allow several machines to 
work together, or one machine to build the classifiers one after the other, saving only the 
label probabilities, and then combining the results to produce the best label for the test 
data. 
 
 
Appendix 
 
Suppor Vector Machine (SVM) Formatted Data 
 
The -outputSVM flag is available to transform the Polarity Dataset v2.0 training and test 
data into SVM format.  You can select the fraction of the data sets to transform via the -
SVM_K <integer number> flag.  Since the number of SVM features per review can reach 
over 2 million, I highly recommend taking just a small fraction (e.g. 1/25) of the 2000 
movie reviews to use for SVM classification.  Otherwise, the resultant SVM-formatted 
data file sizes may exceed your disk space.  Additionally, using extremely large data files 
will cause the SVM training to take a very long time. 
 
Please consult the README file included in the java/ subdirectory for more information 
about how to run the MaxEnt classifier with flags. 
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